University of San Diego produced an online course called "Introduction to Algae." The course is free to all participants; however, there is a nominal fee for a "certificate of completion" from Coursera.
Read More
You have no items in your shopping cart.
University of San Diego produced an online course called "Introduction to Algae." The course is free to all participants; however, there is a nominal fee for a "certificate of completion" from Coursera.
Read More
Our 2018 Algal course is rescheduled for Fall 2018. Please contact NCMA@bigelow.org should you have any questions.
Read MoreOur sincerest apologies: we are temporarily not selling Sargasso seawater. We hope to replenish our stock shortly. Please contact NCMA@bigelow.org should you have any questions.
Read MorePlease click here to view the video clip of Bob Guillard describing the isolation of 3H then scroll down to the December 27, 2017 Facebook entry.
Read MoreCCMP3492 Wittrockiella australis
Read MoreRobert A. Andersen, Director Emeritus of NCMA, has recently co-authored a publication which has added new insights to the phylogenetic relationships of the genus Ochromonas and relationships of the genus Ochromonas with other chrysophyte algae.
Read More
IN MEMORIAM ROBERT R. L. GUILLARD (5 February 1921–25 September 2016) by William G. Sunda Department of Marine Sciences University of North Carolina
Read MoreOur office and laboratory observes 12 holidays each year
Read MoreRegistration is now open for the Algal Culturing Workshops
Read MoreHow a $5,000 idea blossomed into a $300,000 greenhouse
It all started with a good idea, willing partners, and a $5,000 corporate-sponsored research project. The idea germinated, blossomed, and grew into a $300,000 greenhouse and the formation of a marine algae research facility. The Maine Algal Research and Innovation Accelerator, MARIA, will be constructed on the Bigelow Laboratory for Ocean Sciences campus in East Boothbay this spring. The Maine Community Foundation is providing funds for the construction project and scaling up of activity.
Read MoreCCMP1992 Prasinococcus capsulatus
Read MoreBioactivity and Applications of Sulphated Polysaccharides from Marine Microalgae
Maria Filomena de Jesus Raposo, Rui Manuel Santos Costa de Morais and Alcina Maria Miranda Bernardo de Morais
Mar. Drugs 2013, 11, 233-252; doi:10.3390/md11010233
The authors review current research on the biological activities and applications of polysaccharides, active biocompounds synthesized by marine microalgae. While marine polysaccharides (such as fucoidan, carrageenan, alginate, and agar) have long been known for their texture-improving properties in food and cosmetics, recent research describes their potential for other biological applications and health benefits ranging from nutraceuticals, to therapeutic agents, to cosmetics and other areas such as lubricants.
The authors go on to specify strains of marine microalgae and the type of polysaccharides they produce. According to the authors there are extensive publications on the applications of microalgal biomass and biocompounds produced by microalgae, including literature on the antiviral activity of the polysaccharides produced by some microalgae, but little has been published in other areas and only dealing with a few marine species. Areas ripe for further investigation using marine microalgae polysaccharides in the following applications include:
The authors also cite advantages of working with microalgae for investigations into the properties they produce, including:
Should you choose to investigate the many potential new applications of polysaccharides, we invite you to contact the National Center For Marine Algae and Microbiota (NCMA). We have hundreds of strains of polysaccharide-producing microalgae that are available to the research community. We also offer counsel on how to grow, culture, and maintain strains to ensure productive research results.
NCMA maintains a diverse collection of marine microalgae strains to be available to the research and biotech communities to conduct further studies. We currently maintain around 3,000 strains of which a subset have been shown to produce extracellular polysaccharides, sulfated polysaccharides or their derivatives.
Table 1 below is a modification of information originally presented in the publication. It shows the group of algae, number of strains available in the NCMA collection and the type of polysaccharide it produces. We have also included the NCMA Commercialization index, which is an indicator of how easy the strain is to grow. The NCMA Commercialization Index is based on the 30 years experience of our curators maintaining the collection.
Table 1. NCMA Commercialization Index of microalgae that produce extracellular polysaccharides.
NCMA Commercialization Index (NCMA CI) | |||||
Robust and very easy to grow | |||||
Easy to grow | |||||
Hard to grow | |||||
Group | Name | CCMP Strain | NCMA CI |
Type of Polysaccharide |
Reference |
Diatoms | |||||
Cylindrotheca closterium | 6 CCMP Strains | ![]() |
Sulfated polysaccharide | 1,2 | |
Phaeodactylum tricornutum | 11 CCMP Strains | ![]() |
Sulfated exopolysaccharide | 3,4 | |
Chaetoceros sp. | 62 CCMP Strains | ![]() |
Exopolysaccharide | 5 | |
Amphora sp. | 13 CCMP Strains | ![]() |
Exopolysaccharide | 4 | |
Chlorophytes | |||||
Chlorella autotrophica | 1 CCMP strain | ![]() |
Sulfated polysaccharide | 5,6,7 | |
Prasinophyte | |||||
Tetraselmis sp. | 118 CCMP Strains | ![]() |
Sulfated polysaccharide | ||
Prymnesiophyte | |||||
Isochrysis sp. | 4 CCMP Strains | ![]() |
Sulfated polysaccharide | ||
Rhodophytes | |||||
Porphyridium sp. | 7 CCMP Strains | ![]() |
Sulfated polysaccharide | 8,9 | |
Rhodella maculata | 4 CCMP Strains | ![]() |
Sulfated polysaccharide | 10 | |
Cyanophytes | |||||
Arthrospira platensis | 1 CCMP Strain | ![]() |
Exopolysaccharide | 11,12,13 | |
Aphanocapsa sp. | 1 CCMP Strain | ![]() |
Sulfated polysaccharide | 14 |
References:
1. Staats, N.; de Winder, B.; Stal, L.J.; Mur, L.R. Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur. J. Phycol. 1999, 34, 161–169.
2. Pletikapic, G.; Radic, T.M.; Zimmermann, A.H.; Svetlicic, V.; Pfannkuchen, M.; Maric, D.; Godrjan, J.; Zutic, V. AFM imaging of extracellular polymer release by marine diatom Cylindrotheca closterium (Ehrenberg) Reiman & JC Lewin. J. Mol. Recogn. 2011, 24, 436–445.
3. Guzmán-Murillo, M.A.; López-Bolaños, C.C.; Ledesma-Verdejo, T.; Roldan-Libenson, G.; Cadena-Roa, M.A.; Ascencio, F. Effects of fertilizer-based culture media on the production of exocellular polysaccharides and cellular superoxide dismutase by Phaeodactylum tricornutum (Bohlin). J. Appl. Phycol. 2007, 19, 33–40.
4. Chen, C.-S.; Anaya, J.M.; Zhang, S.; Spurgin, J.; Chuang, C.-Y.; Xu, C.; Miao, A.-J.; Chen, E.Y.-T.; Schwehr, K.A.; Jiang, Y.; et al. Effects of engineered nanoparticles on the assembly of exopolymeric substances from phytoplankton. PLoS One 2011, 6, 1–7.
5. Penna, A.; Berluti, S.; Penna, N.; Magnani, M. Influence of nutrient ratios on the in vitro extracellular polysaccharide production by marine diatoms from Adriatic Sea. J. Plankton Res. 1999, 21, 1681–1690.
6. Yingying, S.; Changhai, W. The optimal growth conditions for the biomass production of Isochrysis galbana and the effects that phosphorus, Zn2+, CO2, and light intensity have on the biochemical composition of Isochrysis galbana and the activity of extracellular CA. Biotechnol. Bioprocess Eng. 2009, 14, 225–231.
7. Guzmán-Murillo, M.A.; Ascencio, F. Anti-Adhesive activity of sulphated exopolysaccharides of microalgae on attachment of the red sore disease-associated bacteria and Helicobacter pylori to tissue culture cells. Lett. Appl. Microbiol. 2000, 30, 473–478.
8. Geresh, S.; Arad, S.M. The extracellular polysaccharides of the red microalgae: Chemistry and rheology. Bioresour. Technol. 1991, 38, 195–201.
9. Dubinsky, O.; Barak, Z.; Geresh, S.; Arad, S.M. Composition of the cell-wall polysaccharide of the unicellular red alga Rhodella reticulata at two phases of growth. In Recent Advances in Algal Biotechnology, the 5th International Conference of the Society of Applied Algology; Office of Naval Research: Tiberias, Israel, 1990; p. 17.
10. Arad, S.M. Production of sulphated polysaccharides from red unicellular algae. In Algal Biotechnology; Stadler, T., Mollion, J., Verdus, M.C., Karamanos, Y., Morvan, H., Christiaen, D., Eds.; Elsevier Applied Science: London, UK, 1988; pp. 65–87.
11. Fareed, V.S.; Percival, E. The presence of rhamnose and 3-O-methylxylose in the extracellular mucilage from the red alga Rhodella maculata. Carbohydr. Res. 1977, 53, 276–277.
12. Radonic, A.; Thulke, S.; Achenbach, J.; Kurth, A.; Vreemann, A.; König, T.; Walter, C.; Possinger, K.; Nitsche, A. Anionic polysaccharides from phototrophic microorganisms exhibit antiviral activities to Vaccinia virus. J. Antivir. Antiretrovir. 2010, 2, 51–55.
13. Hayashi, T.; Hayashi, K.; Maeda, M.; Kojima, I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. Nat. Prod. 1996, 59, 83–87.
14. Martinez, M.J.A.; del Olmo, L.M.B.; Benito, P.B. Antiviral activities of polysaccharides from natural sources. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier B.V.: London, UK, 2005; Volume 30, pp. 393–418.
The Aquaculture Express Bundle offers five of our Aquaculture Express strains for a discounted price.
Read MorePlease wait...
Update your browser to view this website correctly. Update my browser now